The Role of Spillover in Carbon Monoxide Hydrogenation over Alumina-Supported Platinum ### RAYMOND L. FLESNER AND JOHN L. FALCONER Department of Chemical Engineering, University of Colorado, Boulder, Colorado 80309-0424 Received June 9, 1992; revised August 24, 1992 Temperature-programmed reaction and desorption (TPR, TPD) were used to study the formation and hydrogenation of CH_3O on a 7.7% Pt/Al_2O_3 catalyst. Methoxy forms in an activated spillover process following CO and H_2 adsorption on Pt, and adsorbed CH_3O has the same desorption and reaction properties as adsorbed CH_3OH . The CH_3O species hydrogenates faster to CH_4 than does CO adsorbed on Pt. Spillover is faster than hydrogenation at low temperatures, but the activation energy for spillover is smaller. Water significantly inhibits spillover by poisoning the adsorption sites on Al_2O_3 . A physical mixture of Al_2O_3 and Pt/Al_2O_3 was used to show that CH_3O was adsorbed on Al_2O_3 . At elevated temperature and in the absence of gas-phase H_2 , CH_3O decomposition limits the formation of gas-phase CO and CO and CO and CO and CO are studied by CO and CO are studied by CO and CO are surface coverage, heating rate, and CO are some during CO and CO are surface coverage, heating rate, and CO are some during CO are also varied. CO and CO are surface coverage, heating rate, and CO are surface coverage, heating rate, and CO are surface coverage. #### INTRODUCTION On Ni/Al₂O₃ catalysts, two types of methanation sites have been identified during temperature-programmed reaction (TPR) by the presence of two distinct CH₄ peaks (1-3). The lower temperature CH₄ peak was due to hydrogenation of CO on Ni and the higher temperature peak was the result of hydrogenation of CH₃O, which was adsorbed on Al₂O₃; the CO on Ni hydrogenated at a faster rate. The CH₃O formed by spillover from the Ni in an activated process that occurred during TPR. A similar spillover process was also observed on Pt/Al₂O₃ (4), but CH₃O hydrogenated at a faster rate than CO on Pt. On Pd/Al₂O₃, CH₃O also hydrogenated faster than CO on Pd, though two distinct CH₄ peaks were not observed (5). Alumina-supported Pt and Pd catalysts exhibit higher methanation rates than the silica-supported or unsupported metals during steady-state measurements. For example, the site-time yield on Pt/Al₂O₃ has been reported to be 20–40 times higher than on Pt powder (4, 6, 7). These enhanced activities may be the result of CH₃O hydrogenation, and thus we have studied the spillover and methanation processes on Pt/Al₂O₃ in more detail in the present study. Robbins and Marucchi-Soos (4) showed clearly, with a combination of TPR and IR on a 12% Pt/ Al₂O₃ catalyst, that CH₃O hydrogenated faster than CO. The peak temperature for CH₄ from CH₃O was 490 K and for CH₄ from CO on Pt was 613 K. They showed that CO adsorbed molecularly on Pt at 300 K, but converted to CH₃O, which was adsorbed on Al₂O₃, when their 12% Pt/Al₂O₃ catalyst was heated to 380 K in H₂. The relative amplitudes of the two distinct CH₄ peaks changed as H₂O adsorbed on the surface; the peak due to CH₃O hydrogenation decreased significantly in amplitude. They concluded that formation or stabilization of reactive CH₂O required a vacant Al cation on the surface, and these Al cations were formed when the surface was dehydroxylated at temperatures above 473–523 K. Using molecular orbital theory, Anderson and Jen (8) modeled CH₃O mobility on Al₂O₃ and found that CH₃O can move from one Al³⁺ site to another while H moves in parallel along O² sites. They also calculated that CH₃O was more likely to hydrogenate to CH₄ than CH₃OH because recombination of CH₃O adsorbed on a Al³⁻ site with H is less endothermic for CH₄ formation than for CH₃OH formation. On Pt/Al₂O₃, CO spillover removed CO from the Pt, but some CO remained on the Pt at elevated temperatures. Robbins and Marucchi-Soos (4) could not tell if the Al cation sites act as catalysts in the formation of CH₃O or simply as reservoirs for CH₃O species. Because H₂O forms during CO hydrogenation, and because H₂O inhibits CH₃O formation, the role of these sites during steady-state reaction was unclear. A correlation is seen, however, between steady-state kinetics and TPR. No methane formed during TPR of CO adsorbed on Pt powder (4), which also exhibits a lower steady-state methanation activity than Pt/Al₂O₃ (6, 7). Temperature-programmed reaction and desorption experiments were carried out in the present study on a 7.7% Pt/Al₂O₃ catalyst. By using a mass spectrometer to detect all the reaction products and by using a number of variations on the standard TPR experiment (including isotope labeling), additional insight into the surface processes was obtained. The same process occurred as observed on 12% Pt/Al₂O₃ (4). Since reduction in H₂ was carried out at 773 K in the present study, only one CH₄ peak was observed during a standard TPR. On 12% Pt/Al₂O₃, two peaks were observed, but only for experiments preceded by lower temperature reduction (4, 9). Temperature-programmed desorption (TPD) helped verify the presence of CH₃O, and TPR on Al₂O₃-Pt/Al₂O₃ physical mixtures was used to show CH₃O was adsorbed on the support. Methanol was also adsorbed so a direct comparison could be made to CO and H₂ coadsorption. By interrupting TPR after some CH₄ had formed, and rapidly cooling the catalyst, lower coverages were obtained and the two reaction sites were studied as H₂ pressure, heating rate, and the presence of coadsorbed species (H₂O, ¹³CO) were varied. The rate of spillover was shown to be rapid and to have a lower activation energy than methanation. At atmospheric pressure and below, the spillover rate appears to be linear in H₂ pressure. Higher CH₃O coverages were also obtained by CO and H₂ adsorption at 385 K, and as the CH₃O coverage increased, the rate of CH₄ formation decreased. Though the *amount* of CH₄ formed increased, a large amount of CO also desorbed from the catalyst, and in a few cases dimethyl ether and methanol were observed. ### EXPERIMENTAL METHODS Temperature-programmed desorption (TPD) and reaction (TPR) experiments were carried out on a 7.7% Pt/Al₂O₃ catalyst in a flow and detection system that has been described previously (10, 11). Briefly, a 100mg sample of reduced and passivated catalyst was placed in a 1-cm OD tubular quartz downflow reactor, which was heated by a temperature-programmed electric furnace. A 0.5-mm OD, chromel-alumel thermocouple, placed in the center of the catalyst bed, measured catalyst temperature and provided feedback to the temperature programmer. The catalyst was pretreated at 773 K in H₂ flow for 2 h, and then the catalyst was cooled to 300 K in either H₂ or He. Carbon monoxide was adsorbed at 300 or 385 K by injecting 0.15 cm³ (STP) pulses of a 10% CO/He mixture into H_2 or He carrier gas. Isotope experiments were carried out to label CH₃O on the support with one carbon isotope (e.g., ¹³CH₃O) and CO on the metal with another C isotope (e.g., ¹²CO). When ¹³CO was used for isotope labeling experiments, 0.05 cm³ (STP) pulses of the pure gas were injected into the carrier gas stream. To obtain TPR spectra, the catalyst was heated in 100% H₂, 100% D₂, or a H₂/He mixture after CO adsorption. The total pressure was approximately 0.8 atm except for two TPR experiments, where the pressure of the H₂ carrier gas was 2 atm. For TPR experiments the heating rate was set at 0.5, 1, or 2.5 K/s. Most TPR experiments were run at 1 K/s. To obtain TPD spectra of coadsorbed CO and H₂, the carrier gas was switched to He after CO adsorption in H₂ flow, and the catalyst temperature was then raised at 1 K/s in He. After TPD, TPR was carried out, without additional adsorption, to determine the amount of surface carbon that remained on the catalyst. Species leaving the catalyst surface were detected immediately downstream of the reactor by a computer-controlled, UTI quadrupole mass spectrometer. This system allowed the catalyst temperature and multiple mass peaks to be detected simultaneously. Mass signals for H₂, CO, CO₂, CH₄, CH₃OH, and (CH₃)₃O were recorded, and calibrations were done by injecting known volumes of pure gases. The CO signal was corrected for cracking from CO2. The mass to charge (m/e) signal recorded for CH₄ was 15, for CH₃OH, 31, and for (CH₃)₅O, 31 and 45. For some experiments, interrupted TPR was used to remove some of the adsorbed CO and obtain less-than-saturation coverage. Immediately after reaching the interruption temperature while heating at 1 K/s, the catalyst was cooled at approximately 30 K/s in H₂. The interruption temperature was chosen such that some CO or CH₃O was left on the surface. A subsequent TPR or TPD to 775 K was carried out to study the reactivity and desorption properties of the remaining adsorbed species. Methanol was adsorbed to form CH₃O on the Al₂O₃ (12) by slowly evaporating 1 µl of liquid CH₃OH into H₃ flow at 300 K, and TPR and TPD were carried out for adsorbed CH₃OH. Water was adsorbed after CO adsorption by evaporating H₂O from the tip of a needle upstream of the catalyst, in a similar fashion to CH₃OH injection, to study the effect of H₂O adsorbed on Al₂O₃ on the spillover mechanism. The 7.7% Pt/Al₂O₃ catalyst was prepared at Exxon by impregnation to incipient wetness of reforming grade Ketjen alumina with chloroplatinic acid in acetone/water. The impregnated Al₂O₃ was heated in H₂ to 523 K and held there for 1 h before cooling to room temperature, and then was heated to 673 K and held there for 10 h. The catalyst was pretreated at 775 K in pure H₂ for 2 h before the initial TPR and for 15 min between experiments. The CO/Pt ratio, as determined from TPR following CO adsorption at 300 K, was 0.22. To show that CH_3O was adsorbed on Al_2O_3 , a catalyst was made by crushing equal amounts of 7.7% Pt/Al_2O_3 and Kaiser A-201 Al_2O_3 in distilled water. The water was used to increase contact between particles (3). The catalyst-support mixture was then placed in a vacuum oven at approximately 330 to 350 K for 24 h, and it was pretreated for 2 h in H_2 at 773 K before TPR experiments were carried out. #### RESULTS AND DISCUSSION As described in the Introduction, CO and H₂ adsorb on Pt and then form CH₃O in an activated process. The CH₃O was concluded to be adsorbed on the Al₂O₃ surface at vacant Al cation sites (4). To aid in understanding the results, the overall reactions that are involved are listed here. (1) Adsorption on Pt: $$H_2(g) + 2 Pt \leftrightarrow 2 H-Pt$$ $CO(g) + Pt \leftrightarrow CO-Pt$. (2) Methoxy formation and spillover. These two processes are referred to as spillover since they could not be distinguished with the experiments. Methoxy may form on Pt or at the Pt-Al₂O₃ interface, and then spillover onto Al₂O₃: $$3 \text{ H-Pt} + \text{CO-Pt} + \text{Al} \leftrightarrow \text{CH}_3\text{O-Al} + 4 \text{ Pt}.$$ (3) Methanation of CO adsorbed on Pt: CO-Pt + 6 H-Pt $$\rightarrow$$ CH₄(g) + H₂O(g) + 6 Pt. (4) Methoxy hydrogenation to CH₄, perhaps at the Pt-Al₂O₃ interface, though this cannot be determined from current results: FIG. 1. Carbon monoxide and H₂ spectra from TPD of CO adsorbed in H₂ flow on a 7.7% Pt/Al₂O₃ catalyst at: (a) 300 K for 30 min; and 385 K for (b) 15, (c) 30, and (d) 60 min. The spectra are offset vertically. $$CH_3O-Al + 6 H-Pt \rightarrow CH_4(g) + H_2O(g) + 6 Pt + Al.$$ Note that reactions (3) and (4) are not reversible and that the H₂O product readsorbs on the Al₂O₃ surface and desorbs at higher temperatures. ### Methoxy Identification To verify that CH₃O forms on our 7.7% Pt/Al₂O₃ catalyst as it did on 12% Pt/Al₂O₃ (4), TPD of coadsorbed CO and H₂ and of CH₃OH were compared. The simultaneous desorption of H₂ and CO, in an approximate 3:1 ratio, from Ni/Al₂O₃ (2, 13), Ru/Al₂O₃ (14), and Pd/Al₂O₃ (5) have been used to conclude that CH₃O formed on the Al₂O₃ support of these catalysts upon exposure to CO and H₂ at 385 K. Figure 1 shows that similar TPD spectra were observed for 7.7% Pt/Al₂O₃; CO and H₂ desorbed simultaneously in a peak at 500 K when they were coadsorbed at 385 K. This simultaneous for- mation of CO and H_2 indicates that CH₃O decomposition limits the appearance of CO and H_2 . Much smaller amounts of CH₄ and CO₂ also formed, as shown in Fig. 2. The amount of CO and H₂ desorption increased with CO and H₂ exposure at 385 K, as shown in Fig. 1. An H: CO ratio of 2.9 to 3.7 was estimated by measuring the total desorption amounts of H₂ and CO for 30 min and 60 min CO exposure at 385 K. For comparison, methanol adsorption (1 µl liguid) at 300 K gave similar, but not identical, TPD spectra. The CO and H₂ desorbed simultaneously at 500 K with an H: CO ratio of 4.4 based on peak amplitudes at 500 K, and the CH₄ and CO₅ signals were similar to those in Fig. 2. No unreacted CH₃OH and no (CH₃)₂O desorbed. The amount of CO (195 µmol/g catalyst) was similar to that in Fig. 1b. Since IR has shown that CH₃OH adsorbs on Al₂O₃ and forms CH₃O (12, 15), these TPD results confirm that CH₃O forms from coadsorption of CO and H₂ on Pt/ Al₂O₃. The formation of CH₃O from CO and Ftg. 2. Carbon dioxide and CH₄ spectra from TPD: same conditions as Fig. 1. The CO₂ spectra are offset vertically. Fig. 3. Methane and CO spectra from TPR of CO adsorbed at : (a) 300 K for 30 min in He flow; and 385 K for (b) 30, (c) 60, and (d) 90 min in H₂ flow on a 7.7% Pt/Al₂O₃ catalyst. The CH₄ spectra are offset vertically. H₂ adsorption was activated; when CO and H₂ were coadsorbed at 300 K instead of 385 K on 7.7% Pt/Al₂O₃, less CO and H₂ adsorbed and CO and H₂ did not desorb simultaneously during TPD. The decomposition of CH₃O or CH₃OH during TPD occurs by reverse spillover and decomposition on the Pt or at the Pt-Al₂O₃ interface. Methanol adsorbed on Al₂O₃ decomposes at a much higher temperature when Pt is not present (16). # Carbon Monoxide and Methoxy Hydrogenation When CO was adsorbed on 7.7% Pt/Al₂O₃ at 300 K in He flow, the subsequent TPR spectra in H₂ flow (Fig. 3a) showed that CH₄ started forming near 350 K, and the CH₄ peak temperature was 495 K. A small shoulder was present near 580 K. Similar TPR results were obtained by Robbins (9) for this catalyst, and the amount of CH₄ (88 μ mol/g catalyst) was similar to that observed by Robbins (95 μ mol/g catalyst). Carbon monoxide adsorption at 385 K in He flow or at 300 K in H₂ flow gave the same spectra as in Fig. 3a. For all three adsorption conditions, the unreacted CO was less than 1% of the CH₄ amount and no CO₂, CH₃OH, or (CH₃)₂O was detected. The rapid formation of CH₄ in Fig. 3a is attributed to spillover, which occurs during TPR, to form CH₃O on Al₂O₃ (4, 5, 17, 18). The methoxy is then hydrogenated to CH₄, though we cannot distinguish whether CH₃O is hydrogenated on Pt, Al₂O₃, or the Pt-Al₂O₃ interface. When CH₃O was formed on the catalyst prior to TPR by CO and H₂ coadsorption at 385 K, however, the CH₄ peak temperature increased to 560 K (Figs. 3b-3d), which indicated that CH₄ formation was slower. The amount of CH₄ doubled, and the amount of unreacted CO increased dramatically for adsorption at 385 K (Figs. 3b-3d). Since more than 150 μ mol CO/g catalyst desorbed during TPR following 60 and 90 min of CO adsorption at 385 K in H₂ flow, and only 88 μmol CO/g catalyst adsorbed on Pt (as determined by CO adsorption at 300 K), a significant portion of the CO that desorbed during TPR came from CH₂O decomposition and not from CO adsorbed on Pt. In addition, CO₂ and (CH₂)₂O formed, as shown in Fig. 4. The amount of (CH₃)₅O increased faster than the increase in exposure, but even at 90 min exposure, the amount of (CH₃)₂O was less than 5% of the CH₄ amount. No CH₃OH formed. Figure 3 shows that as CH₃O coverage increased, the rate of hydrogenation decreased and CO started to desorb. Robbins and Marucchi-Soos (4) also observed a decrease in the rate of CH₄ formation when CO was adsorbed at 380 K instead of 300 K, but the peak temperature increase was only 40 K on their more highly loaded catalyst. The decreased rate of CH₄ formation may be due to CO on Pt inhibiting H₂ adsorption (5, 9). For high CH₃O coverages on Al₂O₃, CO cannot form CH₃O and spill over as rapidly and thus fewer vacant sites are created on Pt for H₂ adsorption. As a result, CO FIG. 4. Carbon dioxide and $(CH_3)_2O$ spectra from TPR: same conditions as Fig. 3. The CO_2 spectra are offset vertically. desorbs during TPR instead of forming CH₃O, and the CH₃O on Al₂O₃ undergoes reverse spillover and decomposes instead of being hydrogenated. To study this effect, CO and H, were coadsorbed at 385 K for 15 min and the catalyst was held on additional 15 min in H₂ at 385 K in an attempt to remove all the CO from Pt by forming CH₃O on Al₂O₃. The resulting TPR spectrum (Fig. 5b) had the same peak temperature (550 K) as for Figs. 3b-3d, in which the hold-in-hydrogen step was omitted, but CH₄ formation started near 350 K, as was observed when CO was adsorbed at 300 K (Fig. 5a). When the experiment for Fig. 5b was repeated, but CO was also adsorbed at 300 K before TPR in order to saturate the Pt surface, the initial rate of CH₄ formation decreased (Fig. 5c). Apparently, CO on Pt inhibited H₂ adsorption and thus CH₃O hydrogenation. High CH₃O coverages may also delay spillover since the CH₄ peak temperatures are the same for Figs. 5b and 5c, and they are significantly higher than Fig. 5a (CO adsorption at 300 K). The additional CO that was adsorbed on the Pt at 300 K for the experiment in Fig. 5c desorbed unreacted, in the same manner as shown in Fig. 3. The decrease in spillover due to the high CH₃O coverage allowed CO to desorb from the Pt surface, though some CH₃O may have also decomposed to CO and H₂. Temperature-programmed reaction of CH₃OH adsorbed at 300 K was similar to that for CH₃O hydrogenation (Fig. 3b) but less CO desorbed (13 μmol CO/g catalyst, 230 μmol CH₄/g catalyst) possibly because not as much CO was adsorbed on the Pt surface. The CH₄ peak temperature was 562 K, the same as for CO and H₂ adsorption at 385 K. Neither CH₃OH nor (CH₃)₂O formed for this coverage of adsorbed CH₃OH. FIG. 5. Methane spectra from TPR of CO adsorbed in H₂ flow on a 7.7% Pt/Al₂O₃ catalyst at: (a) 300 K for 15 min, (b) 385 K for 15 min followed by holding the catalyst in H₂ flow at 385 K for 15 min, and (c) 385 K for 15 min followed by holding the catalyst in H₂ flow at 385 K for 15 min and then CO adsorption at 300 K for 15 min. Ftg. 6. Methane, CO_2 , CO_2 , and $(CH_3)_2O$ spectra from TPR of CO adsorbed at 385 K for 60 min in H_2 flow on a 1:1 mixture of 7.7% Pt/Al₂O₃ and Al₂O₃ (solid lines) and on a 7.7% Pt/Al₂O₃ catalyst (dashed lines). The spectra are offset vertically. ### Methoxy Location A physical mixture of Al₂O₃ and the Pt/ Al₂O₃ catalyst was used to verify that CH₃O was on the support and to determine how the reaction rate was affected by increasing the available Al₂O₃ area. Similar experiments have been carried out on Al₂O₃-Ni/ Al₂O₃ mixtures (3). For CO and H₂ coadsorption for 60 min at 385 K, the CH₄ and CO spectra (Fig. 6, solid lines) were similar in shape to those obtained on Pt/Al₂O₃ alone (Fig. 6, dashed lines), but the peak temperatures were both 26 K higher. Similar amounts of CH₄ and CO formed, per gram material in the reactor, even though only half as much Pt was in the mixture. For shorter exposures at 385 K less CH₄ and CO formed from the mixture, and for adsorption at 300 K, more than half as much CH₄ (59 μ mol/g catalyst for the mixture, 88 μ mol/g catalyst for Pt/Al₂O₃) formed per gram material in the reactor. The amounts of CH₃O adsorbed on the catalyst and on the mixture were calculated by the difference in total products for 385 and 300 K adsorption, and they were normalized per gram Al₂O₃. For 30 min adsorption the CH₃O amounts for the catalyst and the mixture were 200 and 155 µmol CH₃O/g Al₂O₃, respectively. At higher exposure (60) min) the surfaces were closer to saturation and the amounts were almost equal (280 and 285 μmol CH₃O/g Al₂O₃). Though the exact same values are not expected since a different Al₂O₃ was used for the mixture than for catalyst preparation, these results show that the CH₃O was absorbed on the Al₂O₃ surface. When CO and H₂ were exposed to the Al₂O₃ alone at 385 K (3, 4), essentially no adsorption was observed; adsorption from CO and H₂ on the Al₂O₃ surface of Pt/Al₂O₃ occurred by spillover from Pt. An increase in peak temperature during TPR on the mixture was also observed for CH₃O hydrogenation on Al₂O₃-Ni/Al₂O₃ mixtures (3). Both formation and hydrogenation of CH₃O were slower when more Al₂O₃ was present; the added Al₂O₃ was not as close to Pt particles and thus the diffusion distance was increased. Consistent with this observation, the CH₄ peak temperature was 27 K lower on the 12% Pt/Al₂O₃ catalyst (4) than on our 7.7% Pt/Al₂O₃. Also, during adsorption, CH₃O formation was slower when less Pt was available (per gram material in the reactor) because the Pt area is the original location of CO and H₂ adsorption. ### Isotope Labeling On Ni/Al₂O₃ catalysts, the CH₃O (on Al₂O₃) and the CO (on Ni) were labeled with different carbon isotopes (1, 19) so that the CH₄ formed from metal and support could be distinguished. These experiments on Ni/Al₂O₃ were accomplished by exchanging CO on the Ni with isotopically labeled CO; the CH₃O did not exchange at 300 K. To determine if the same labeling could be carried out for Pt/Al₂O₃ catalysts, ¹²CO was adsorbed at 300 K (10 min) and ¹³CO was then exposed to the catalyst at 300 K (30 min). FIG. 7. TPR spectra of ¹²CH₄, ¹³CH₄, ¹²CO, and ¹³CO for ¹²CO adsorbed at 385 K for 60 min in H₂ followed by ¹³CO adsorption at 300 K for 30 min on a 7.7% Pt/Al₂O₃ catalyst. The subsequent TPR showed that 90% of the ¹²CO was displaced by ¹³CO. On Ni/Al₂O₃, essentially all the CO on Ni exchanged in a shorter time. Ninety percent exchange was more than sufficient, however, for distinguishing adsorption sites. Thus, ¹²CO was adsorbed at 385 K in H₂ flow to form ¹²CH₃O, and then ¹³CO was exposed to the catalyst at 300 K for 30 min to displace ¹²CO on the Pt. The subsequent TPR spectra, in Fig. 7, show that the ¹²CH₄ (from ¹²CH₃O hydrogenation) and ¹³CH₄ (from CO hydrogenation) have almost identical shapes. However, 62% of the ¹²CH₂O was hydrogenated while only 23% of the ¹³CO was hydrogenated. In contrast, when CO was adsorbed on Pt at 300 K and no CH₃O was present on the support, essentially all the CO was hydrogenated to CH₄ (Fig. 3). The amount of ¹²CH₄ in Fig. 7 was 10 times the amount of ¹³CH₄. Note also that ¹³CO desorbed at a lower temperature than ¹²CO. Similar observations were made for Pd/Al₂O₃ (5). At low CH₃O coverage, CO on Pt can spill over during TPR to form CH₃O, which is then hydrogenated. At high CH₃O coverages, fewer sites are available for spill-over and thus CO desorption competes effectively with spillover. The total amount of 13 C products (13 CH₄, 13 CO, 13 CO₂) was 85 μ mol/g catalyst, and this is close to the value expected for 90% exchange of 12 CO from the Pt (79 μ mol/g catalyst). In Fig. 7, the ¹³CO desorbed at lower temperature than ¹²CO, but the ¹²CH₄ and ¹³CH₄ signals are nearly identical in shape and peak temperature. This indicates that both ¹²CH₄ and ¹³CH₄ formed by the same process, but the formation of ¹²CO and ¹³CO are limited by different processes. For example, ¹³CO may desorb directly from the Pt, but ¹²CH₃O decomposition at the metal or metal-support interface limits ¹²CO formation. During TPR, some ¹³CO spills over to the support, and the resulting ¹³CH₃O forms ¹³CH₄ at nearly the same temperature that ¹²CH₃O forms ¹²CH₄. Some of this ¹³CH₃O may also decompose to form ¹³CO and that is reflected in the ¹³CO tail near 550 K. ## Influence of Water Adsorption On a 12% Pt/Al₂O₃ catalyst, two distinct CH₄ peaks, due to CH₃O and CO hydrogenation, were readily observed during TPR (4). Exposure to H₂O vapor at room temperature, followed by reduction at temperatures between 523 and 723 K prior to CO adsorption, changed the relative distribution of the two types of sites during TPR. The H₂O occupied sites on the Al₂O₃ surface, and for low reduction temperatures the CH₃O hydrogenation peak was almost eliminated (4). On our 7.7% Pt/Al₂O₂ catalyst (reduced at 773 K), instead of two distinct CH₄ peaks, essentially all the CO adsorbed at 300 K appears to be hydrogenated in the low-temperature peak, which is due to CH₃O hydrogenation. When a fresh 7.7% Pt/Al₂O₃ catalyst (which had been stored in air) was pretreated at 573 K instead of 773 K. however, results similar to those of Robbins and Marucchi-Soos (4) were obtained: two Fig. 8. Methane and CO spectra from TPR of CO adsorbed at 300 K for 30 min in H_2 flow followed by H_2 O adsorption on a 7.7% Pt/Al₂O₃ catalyst. Water amounts: (a) 0, (b) 100, (c) 200, and (d) 540 μ mol/(g catalyst). distinct CH₄ peaks of approximately the same amplitude were observed. According to Robbins and Marucchi-Soos (4), at higher reduction temperatures, extensive dehydration of the Al₂O₃ occurs, and a sufficient number of Al cation support sites exist so that most of the CO on the metal can form CH₃O on the support by spillover. To verify this, H₂O was adsorbed to hydrate some of these support sites after CO adsorption at 300 K. As shown in Fig. 8, as the amount of adsorbed H₂O increased, less CH₄ formed at low temperature and a high-temperature CH₄ peak grew. For a high H₂O coverage, essentially all the CH₄ formed in the peak above 600 K (Fig. 8d). Carbon monoxide only desorbed when virtually no CH₄ formed in the low-temperature peak (at the highest H₂O exposure shown in Fig. 8d). The corresponding water desorption curves are shown in Fig. 9. Since H₂O has a significant effect on the distribution of reaction sites, and since H₂O is formed as CH₃O is hydrogenated during TPR, water is expected to influence methanation during TPR. Interrupted TPR, in which some CO (as CH₃O) is hydrogenated to CH₄ before the heating is interrupted and the sample quickly cooled, yields a lower surface coverage of CO. This was used to study the effect of H₂O and to help distinguish the two distinct methanation processes. Figure 10 shows two distinct CH₄ peaks in TPR spectra obtained following interrupted TPR to 500, 520, or 540 K and rapid cooling to 300 K. The CO was initially adsorbed at 300 K. The amounts of CH4 in the high-temperature peaks are small compared to the total CH₄ formed during the standard TPR (Fig. 10a). Note in Fig. 10 that a significant fraction of the CH₄ forms below the interruption temperature. For example, even though interrupted TPR was carried out to 520 K, during the subsequent TPR (Fig. 10c) more than half the CH₄ formed below 520 K and the methanation rate became significant near 360 K. In other words, CH₄ starts form- Ftg. 9. Water spectra from TPR: same conditions as Fig. 8. Fig. 10. Methane spectra from TPR of CO adsorbed at 300 K for 30 min in H₂ flow on a 7.7% Pt/Al₂O₃ catalyst. After CO adsorption, interrupted TPR was carried out at 1 K/s to: (a) 300 K, (b) 500 K, (c) 520 K and (d) 540 K. ing at approximately 160 K lower temperature than was reached during the interrupted TPR. The portion of the CH₄ curve below the peak maximum in Fig. 10a was fit to a first-order TPD simulation by using an activation energy of 69 kJ/mol. The interrupted reaction experiments were then simulated by integrating to the interruption temperature and then restarting the numerical simulation at 300 K for the resulting lower surface coverage. The calculated spectra for the CH₄ signals up to 500 K were similar to those shown in Figs. 10b-10d. That is, the simulation indicates that it is reasonable for CH₄ to form at much lower temperature than the interruption temperature, and a significant fraction of the CH₄ is expected to form below the interruption temperature for a first-order process. To verify that H₂O poisons support sites, interrupted TPR was carried out following CO and H₂ coadsorption at 385 K. This adsorption created a high CH₃O coverage on Al₂O₃, so interrupted TPR to 580 K was used to remove most of the CH₃O from the catalyst (and thus deposit more H₂O on the Al₂O₃ surface). During a subsequent TPR (Fig. 11a), two distinct CH₄ peaks of equal amplitude were observed, and less than 2 μ mol/g catalyst of CO desorbed, similar to the results for 300 K adsorption followed by interrupted TPR (Fig. 10c). When H₂O (~1100 μmol/g catalyst) was adsorbed on the catalyst after cooling to 300 K following the interrupted TPR, essentially all the CH₄ formed in the high temperature peak during the subsequent TPR (Fig. 11b). This result shows that after the interrupted TPR, the CO remaining on the catalyst was adsorbed on the Pt; adsorbing H₂O to high coverage prevented CH₃O formation and thus almost all the CO was hydrogenated on the Pt surface. When H₂O was not adsorbed, CO spilled over to form CH₃O as the temperature increased, and the CH₃O was then hydrogenated at low temperatures. Fig. 11. Methane spectra from TPR of CO adsorbed at 385 K followed by interrupted TPR to 580 K and subsequent injection of $\rm H_2O$ onto a 7.7% Pt/Al₂O₃ catalyst. $\rm H_2O$ amounts are: (a) 0 and (b) 1080 μ mol/(g catalyst). The H₂O that was adsorbed for Fig. 11b started desorbing at 320 K and desorbed in two broad peaks up to 775 K. In contrast, H₂O for Fig. 11a did not start desorbing until 580 K (the interruption temperature) and was an order of magnitude smaller. Essentially all the H₂O observed for Fig. 11a resulted from hydrogenation and as H₂O coverages decrease on Al₂O₃, H₂O desorbs at higher temperatures. ### Rate of Spillover before Hydrogenation The spillover rate was compared to the rate of CH₄ formation by adsorbing ¹³CO at 300 K and carrying out interrupted TPR to 420 K, a temperature at which less than 5% of the ¹³CO had reacted to form ¹³CH₄. After the catalyst was rapidly cooled, the ¹³CO remaining on Pt was displaced by 12CO adsorption at 300 K. Any ¹³CH₂O that formed on Al₂O₃ due to spillover would not exchange with ¹²CO at 300 K (19), and thus the amount of ¹³CH₄ observed in a subsequent TPR is a measure of how much spillover occurred by 420 K. This procedure has been shown to be effective at estimating spillover rates on Pd/Al₂O₃ (18). The 36- μ mol ¹³CH₄/g catalyst observed during TPR indicates that 46% of the ¹³CO originally on Pt had spilled over by 420 K. Since only 5% of the original ¹³CO reacted to form ¹³CH₄ during the interrupted TPR to 420 K, the spillover rate is faster than methanation below 420 K. The $^{12}CH_4$ signal (84 μ mol/g catalyst) observed during TPR was the amount expected if most of the ¹³CO remaining on Pt was displaced by ¹²CO. ### Spillover and Methanation Dependence of hydrogen pressure. Interrupted TPR was used to determine how the rate of spillover depends on the H₂ partial pressure. As shown previously, interrupted TPR left sufficient H₂O on the support to inhibit methanation so that two distinct CH₄ peaks could be detected during a subsequent TPR. Thus, interrupted TPR was carried out to 580 K in ambient pressure H₂ after CO adsorption in H₂ flow at 385 K. Different H₂ FIG. 12. Methane spectra from TPR of CO adsorbed at 385 K for 30 min in H₂ flow on a 7.7% Pt/Al₂O₃ catalyst. After CO adsorption, an interrupted TPR in ambient pressure H₂ to 580 K removed 90% of the adsorbed CO. The TPR experiments were then carried out with H₃ at the indicated partial pressure in atm. partial pressures were then used during the subsequent TPR experiments to determine how much CH₄ formed in each peak. Figure 12 shows that the distribution between the two CH₄ peaks changed dramatically for a 10-fold variation in H₂ partial pressure. At 0.08 atm H₂, essentially all the CO was hydrogenated in the high-temperature peak; at 0.82 atm, more than half the CO had spilled over and was hydrogenated in the low-temperature peak. The amount of CH₄ was almost the same for each TPR. The amplitudes of the low-temperature CH₄ peaks are approximately proportional to the H₂ partial pressure. That is, the spillover rate appears proportional to the H₂ pressure. The spectra in Fig. 12 show that the CH₃O hydrogenation rate under these conditions does not show a strong dependence on H₂ pressure since the peak temperature for the low temperature peak did not change as the H₂ pressure changed. On Ni/Al₂O₃ and Ni/ TiO₂ catalysts, CH₃O is hydrogenated slower than CO on Ni, and CH₃O hydrogenation is negative order in H_2 pressure (20). Thus, while the spillover rate increases with H₂ pressure, the hydrogenation rate of the CH₃O that forms does not. In contrast, the hydrogenation rate of CO on Pt increases as the H₂ pressure increases. The peak temperature for the high-temperature CH₄ peak decreased 60 K as the H₂ partial pressure increased a factor of ten. The same type dependence for CO hydrogenation on the Ni surfaces of Ni/SiO₂, Ni/Al₂O₃ and Ni/TiO₂ has been observed (20). The amount of CO that desorbed increased as the H₂ pressure decreased, although the amount (3.3 μ mol/g catalyst) was small even for hydrogenation in 0.08 atm H₂. Results similar to those in Fig. 12 were obtained following interrupted TPR to 520 K for CO adsorbed at 300 K. For those experiments, the highest H₂ pressure used was 2 atm, and above 0.82 atm the increase in spillover was not proportional to H₂ pressure. Variation in heating rate. On Ni/Al₂O₃ catalysts, varying the heating rate was an effective way to determine the relative activation energies of spillover and CO hydrogenation on Ni (1). When the heating rate was decreased, spillover was faster than CO hydrogenation on Ni, so that the CH₄ peak due to CH₃O hydrogenation increased and that due to CO hydrogenation decreased. That is, the lower heating rate favored the lower activation energy process (spillover) because more time was available for spillover. Similar experiments on Pt/Al₂O₃ show that the same process occurs so that at lower heating rates the low-temperature peak increased because that peak is due to CH₃O hydrogenation. To carry out these experiments on Pt/Al₂O₃, interrupted TPR to 580 K, following CO and H₂ coadsorption at 385 K, was used so that two distinct CH₄ peaks could be distinguished. Subsequent TPR spectra, obtained at three heating rates, are shown in Fig. 13. Note that the total CH₄ FIG. 13. Methane spectra from TPR at three heating rates on a 7.7% Pt/Al₂O₃ catalyst. Carbon monoxide was adsorbed at 385 K in H₂ flow and an interrupted TPR at 1 K/s was carried out to 580 K prior to the TPR. amount (the area under the curve divided by the heating rate) is the same for the three spectra in Fig. 13. Peak amplitudes were used to estimate the relative amounts in each peak. At a heating rate of 2.5 K/s, approximately 35% of the CH₄ was from CH₃O hydrogenation, but at 0.5 K/s, 62% of the CH₄ was from CH₃O hydrogenation. Since the slower heating, which allows more time at lower temperatures, favors spillover, the activation energy for spillover is lower than that for CO hydrogenation on Pt. An interesting result from Fig. 13 is that the initial rate of CH₄ formation is the same for all three heating rates. Such behavior is indicative of zero-order kinetics, since the CH₃O coverages are different for the three heating rates but the methanation rates are the same. An activation energy of 63 kJ/mol was calculated for this initial rise. This value is close to that reported by Vannice and Twu, 72 kJ/mol, for steady-state hydrogenation of CO on Pt/Al₂O₃ at 548 K (6). This initial zero-order behavior in CH₂O coveraged did not occur after interrupted TPR of CO initially adsorbed only on Pt (compare Figs. 10 and 13). The main difference is that for Fig. 13 a significant amount of H₂O formed, which poisoned some support sites. Therefore, the zero-order behavior in Fig. 13 may result because CH₃O hydrogenates on a limited number of sites. The initial rates may be the same at different heating rates or CH₃O coverages because the reaction sites are saturated; the initial reaction order is zero, and the initial rate only changes because the rate constant changes. In Fig. 10, H₂O has not poisoned a significant number of support sites, so the reaction sites are not the rate limiting factor. Instead, the reaction for the low-temperature peak was modeled using a first-order reaction assumption, and the model approximated the experimental data. Hydrogen isotope effect. No kinetic isotope effect was observed when D₂ was replaced by H2 during TPR following CO adsorption in He at 300 K. The difference in peak temperatures between CH₄ and CD₄ was less than 3 K. In these experiments, ¹³CO was adsorbed when D, was used to avoid interference at mass 20 (12CD₄, D₂O). When CO was adsorbed in H₂ flow at 385 K and an interrupted TPR to 580 K was used to obtain a lower coverage, two distinct methane peaks were observed during the subsequent TPR. When the TPR was carried out in H₂ flow, the 480 K peak was larger than the 600 K peak (Fig. 12, 0.82 atm), whereas when D₂ flow was used, the 600 K peak was larger (Fig. 14). Apparently, CH₃O formation and spillover is slower with D₂. Deuterium dissociation requires more energy than H₂ dissociation, and surface reactions where H2 dissociation is important, either through equilibrium or by being a rate-determining step, will be slower for D₂ than for H₂ if all other factors are the same (21). ### CONCLUSIONS Methoxy forms on Pt/Al₂O₃ in an activated spillover process following CO and H₂ FIG. 14. CD₄ spectra from TPR of CO adsorbed at 385 K for 30 min in H₂ flow on a 7.7% Pt/Al₂O₃ catalyst. After CO adsorption, an interrupted TPR was carried out to 580 K in H₂ flow. The subsequent TPR was then carried out in D₂. coadsorption on Pt. At elevated temperatures and in the absence of gas-phase H₂, CH₃O decomposes, and the formation of gas-phase CO and H₂ is limited by the rate of CH₃O decomposition. In the presence of gas-phase H₂, CH₃O hydrogenates to CH₄ faster than does CO adsorbed on Pt. At low CH₃O coverages, the rate of CH₃O formation and spillover is faster than the hydrogenation rate at low temperatures. The activation energy for spillover is also lower. The spillover rate is approximately first-order in H₂ pressure, but the CH₃O hydrogenation rate does not exhibit a strong dependence on H₂ pressure. At high CH₃O coverages, CH₃O decomposition and CO desorption from Pt compete with spillover and CH₃O hydrogenation. High CH₃O coverage appears to inhibit methanation. The CH₃O was shown to be adsorbed on Al₂O₃, and H₂O poisons the sites where CH₃O adsorbs, and thus decreases the spillover rate. ### **ACKNOWLEDGMENTS** We gratefully acknowledge support by the National Science Foundation, Grants CBT 86-16494 and CTS 90-21194. We are also grateful to Dr. John L. Robbins for providing the catalyst and for his informative suggestions. #### REFERENCES - Glugla, P. G., Bailey, K. M., and Falconer, J. L., J. Phys. Chem. 92, 4474 (1988). - Glugla, P. G., Bailey, K. M., and Falconer, J. L., J. Catal. 115, 24 (1989). - 3. Sen, B., Falconer, J. L., Mao, T-F., Yu, M., and Flesner, R. L., J. Catal. 126, 465 (1990). - Robbins, J. L., and Marucchi-Soos, E., J. Phys. Chem. 93, 2885 (1989). - Hsiao, E. C., and Falconer, J. L., J. Catal. 132, 145 (1991). - Vannice, M. A., and Twu, C. C., J. Catal. 82, 213 (1983). - Vannice, M. A., and Sudhakar, C., J. Phys. Chem. 88, 2429 (1984). - 8. Anderson, A. B., and Jen, S.-F., *J. Phys. Chem.* **95**, 7792 (1991). - 9. Robbins, J. L., private communication. - Falconer, J. L., and Schwarz, J. A., Catal. Rev. Sci. Eng. 25, 141 (1983). - Schwarz, J. A., and Falconer, J. L., Catal. Today 7, 1 (1990). - Matsushima, T., and White, J. M., J. Catal. 44, 183 (1976). - Flesner, R. L., and Falconer, J. L., J. Catal. 133, 515 (1992). - Sen, B., and Falconer, J. L., J. Catal. 113, 444 (1988). - 15. Greenler, R. G., J. Chem. Phys. 37, 2094 (1962). - 16. Chen, B., and Falconer, J. L., in preparation. - Mao, T. F., and Falconer, J. L., J. Catal. 123, 443 (1990). - Chen, B., and Falconer, J. L., J. Catal. 134, 737 (1992). - Chen, B., Falconer, J. L., and Chang, L., J. Catal. 127, 732 (1991). - Sen, B., and Falconer, J. L., J. Catal. 125, 35 (1990). - Laidler, K. J., "Chemical Kinetics." McGraw-Hill, New York, 1965.